Elements and Compounds

Chemistry is the study of different types of materials and their properties. We notice diverse chemical substances and elements all around us. It is consequently critical to classify and categorize them in order to study, analyse, and comprehend their qualities. Elements, compounds, and mixtures are the three types of matter. Elements and compounds are pure chemical substances found in nature. Whereas mixtures are impure substances in our environment. We will learn more about elements and compounds, their types and the differences between them in the article below.

What are Elements and Compounds?

An **element** is a pure substance which consists of identical atoms or molecules with only one core of an atom.

A **compound** is a pure substance which consists of identical atoms or molecules with two or more different types of atomic core bound together.

What are Elements?

In chemistry, an element is a pure substance that further cannot be broken down into a simpler form. Elements are the building blocks of all matter. They are identified by a distinct atomic number. The periodic chart organizes the elements by atomic number, highlighting elements with comparable properties. To date, 118 elements have been found, with many more in the process of discovery.

Classification of Elements

The elements are classified and grouped in the periodic table as metals, nonmetals, and metalloids based on their properties.

• Metals :- are elements that have a tendency to lose electrons in order to achieve stability, exhibiting electro positivity. Metals are further divided into three groups: Main Group Metals, Transition Metals, and f- block metals.

- Non-metals :- Non-metals are elements that have a tendency to gain electrons in order to achieve stability, i.e. they have electronegativity.
- Metalloids :- Metalloids are elements with characteristics that fall between metals and nonmetals.

Few Examples of Elements

Metals - Iron, Copper, Sodium, Aluminium, Lead

Non-Metals - Oxygen, Sulphur, Hydrogen, Argon, Chlorine

Metalloids - Silicon, Germanium, Boron, Arsenic

What are Compounds?

Compounds are chemical substances composed of two or more elements chemically bonded together in a certain ratio. Chemically, compounds can be broken down into simpler types of matter (elements). When the elements join, some of their unique properties are lost, and the newly created compound has new properties.

Classification of Compounds

Compounds are classified as ionic compounds or covalent compounds based on their formation.

- Ionic compounds :- They are generated when a metal and a nonmetal combine. Because they include ions, they are also known as electrovalent compounds.
- Covalent compounds :- They are created when two non-metals interact. They are also referred to as molecular compounds.

Few Examples of Compounds

Water (H₂O), hydrogen peroxide (H₂O₂), sodium chloride (NaCl), carbon dioxide (CO₂), calcium oxide (CaO), ammonia (NH₃), methane (CH₄), etc.

What are Mixtures?

A mixture is an impure material composed of two or more separate chemical components that are not chemically bonded. A mixture's constituents can be added in varying quantities. A mixture lacks a set chemical formula. It also lacks a definite melting and boiling point. It will exhibit the qualities of its constituents and can be deconstructed into them using simple methods.

Examples of mixtures are salt and water, sugar and salt, air, ethanol in water, etc.

Parameters	Elements	Compounds
Definition	Elements are pure	Compounds are pure
	substances made up	substances made up
	of only one type of	of two or more
	atoms.	different types of
		elements.
Composition	Elements only have	Compounds are made
	one type of atoms. The	up of different
	atomic number of	elements arranged in
	each atoms is the	a certain order via
	same.	chemical bonds. They
		only have one sort of
		molecules.
Total Numbers	There are a total of 118	There are
	elements.	endless
		compounds.
Classification	Elements are classified	Compounds are
	as metals,	classified based on
		their bonds i.e. iconic

		1
	non-metals and	compounds or covalent
	metalloids.	compounds.
Representation	Elements are	Compounds are
	represented by	represented by
	symbols and	chemical formulas.
	numbers.	
	e.g. : Na, Cu, Fe,	
	H, O	
Ability to disassemble	Chemical reactions	Chemical
	cannot break down	methods/reactions
	elements into simple	can spilt a compound
	ones.	into simpler
		components.
Distinguished by	Elements are	They are
	identified by their	characterized by
	atomic number.	a constant ratio
		of different.

Heterogeneous and Homogeneous Definition :

What is a Homogeneous Mixture?

These are the types of mixtures in which the components mixed are uniformly distributed throughout the mixture. In other words, *"they are uniform throughout*". We can observe only one phase of matter in a homogeneous mixture. Key points regarding such mixtures are:

- Particles are distributed uniformly
- We can't judge a homogeneous mixture by just seeing it
- Homogeneous mixtures are also called solutions
- Uniform composition
- Example: rainwater, vinegar, etc.

What is a Heterogeneous Mixture?

This is a type of mixture in which all the components are completely mixed and all the particles can be seen under a microscope. We can easily identify the components and more than one phase can be seen by naked eyes.

Key points regarding this type of mixtures :

- Particles are distributed non-uniformly
- We can judge a heterogeneous mixture by just seeing it's nonuniform composition
- **Example :** Seawater, pizza, etc.

Difference between Homogeneous and Heterogeneous Mixture

Homogeneous	Heterogeneous
It has a uniform composition.	It has a non – uniform composition.
It has only one phase	There are two or more phases
It can't be separated out physically	It can be separated out physically
'homo' means the same	'hetero' means different
Example : a mixture of alcohol and water	Example : a mixture of sodium chloride and sand

Example :

Soft Drinks : Homogeneous or Heterogeneous mixture?

In a homogenous mixture, all the components are uniformly distributed and in the soft drink, we find components are uniformly distributed and in the soft drink, we find components likes sweetener, carbon dioxide and water forming a single phase. Therefore, a soft drink is homogeneous mixture.

