### Empirical Formula & Molecular Formula

Initially, chemical formulas were obtained by determination of masses of all the elements that are combined to form a molecule and subsequently we come up with two important types of formulas in chemistry : *molecular formula and empirical formula*.

The empirical formula of a compound gives the simplest ratio of the number of different atoms present, whereas the molecular formula gives the actual number of each different atom present in a molecule. If the formula is simplified then it is an empirical formula. The molecular formula is commonly used and is a multiple of the empirical formula.

The general statement relating molecular formula and the empirical formula is

#### Molecular Formula = n x Empirical Formula

#### What is Molecular formula?

- The molecular formula is the formula derived from molecules and is representative of the total number of individual atoms present in a molecule of a compound.
- A molecular formula uses a subscript that reports the actual number of each type of atom in a molecule of the compound.
- Molecular formulas are associated with gram molecular masses that are simple whole number multiples of the corresponding empirical formula mass.

### What is Empirical formula?

• The empirical formula is the simplest formula for a compound which is defined as the ratio of subscripts of the smallest possible whole number of the elements present in the formula. It is also known as the simplest formula.



- An empirical formula for a compound is the formula of a substance written with the smallest integer subscript.
- The empirical formula gives information about the ratio of numbers of atoms in the compound. The percent composition of a compound directly leads to its empirical formula. Empirical Formula Vs Molecular Formula.

| Empirical Formula                                                                                               | Molecular Formula                                                                                             |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| An empirical formula represents the<br>simplest whole-number ratio of<br>various atoms present in a<br>compound | The molecular formula shows the exact number of different types of atoms present in a molecule of a compound. |
| Example : The empirical formula for Acetylene is CH .                                                           | Example : The molecular formula for Acetylene is $C_2H_2$ .                                                   |

# **Example** : Glucose Molecular Formula Vs Glucose Empirical Formula

Let's take the example of glucose. The molecular formula of glucose is  $C_6H_{12}O_6$  and the empirical formula of glucose is  $CH_2O$ . We can derive a relation between the Molecular formula and the empirical formula of glucose.

## Empirical Formula & Molecular Formula of Butane & Octane [/caption]

 $C_6H_{12}O_6 = 6 \times CH_2O$ 

We can derive a general expression as,

Molecular formula = n x empirical formula ; Where, 'n' is a whole number. Sometimes, the empirical formula and molecular formula both can be the same.



**Question-1**: The empirical formula of Boron Hydride is BH3. Calculate the molecular formula when the measured mass of the compound is 27.66.

### Solution :

The atomic mass is given by = B + 3(H) = 10.81 + 3(1) = 13.81 uBut, the measured molecular mass for Boron atom is given as 27.66 u. By using the expression,

Molecular formula = n x empirical formula n = molecular formula/empirical formula = 27.66 / 13.81 = 2 Putting the value of n = 2 in the empirical formula we get molecular formula as Molecular formula =  $2(BH_3) = B_2H_6$ .

**Question-2**: The empirical formula of a compound is  $COCI_2$  and its molecular mass is 90.00u. Find out the molecular formula of that compound.

### Solution :

COCI2 = C + O + 2(CI) = 12 + 16 + 2(35.5) = 99uEmpirical formula is the same as molecular mass as n=1, this means molecular formula is  $COCI_2$ .

**Question-3**: What is the molecular formula of a compound which has an empirical formula of  $CH_2$  and a relative molecular mass of 70?

**Solution** : Relative molecular mass = 70 Empirical formula mass = 12 + 2 = 14



The relative molecular mass is 5 x the relative empirical formula mass

The molecular formula is 5 x the empirical formula The molecular formula is  $C_5H_{10}$ .

**Question-4**: A compound of iron and oxygen is analysed and found to contain 69.94% iron and 30.06% oxygen. Find the empirical formula of the compound.

### Solution :

| Steps for Problem<br>Solving                                            | Find the empirical formula of a compound of 69.94% iron and 30.06% oxygen.                                  |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Identify the<br>"Given<br>information and what<br>the problem is asking | Given :<br>% of Fe = 69.94%<br>% of O = 30.06%<br>Find : Empirical Formula = Fe <sub>?</sub> O <sub>?</sub> |
| you to find." Calculate                                                 |                                                                                                             |
| a. Assume a 100g<br>sample, convert<br>the same %<br>value to grams.    | 69.94g Fe<br>30.06g O                                                                                       |



| b. Covert to moles.                                                                                                   | $69.94g \text{ Fe x } \frac{1 \text{ mol Fe}}{55.85g \text{ Fe}} = 1.252 \text{ mol Fe}$ $30.06g \text{ O x } 1 \text{ mol O} = 1.879 \text{ mol O}$ |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                       |                                                                                                                                                      |
|                                                                                                                       | 16.00g O                                                                                                                                             |
| c. Divide both moles<br>by the smallest of<br>the results.                                                            | Fe x <u>1 .252 mol</u><br>1.252                                                                                                                      |
|                                                                                                                       | O x <u>1.879 mol</u><br>1.252                                                                                                                        |
|                                                                                                                       | The "non-whole" empirical formula of the compound is Fe1O1.5                                                                                         |
| d. Multiply each of<br>the moles by the<br>smallest whole<br>number that will<br>convert each into<br>a whole number. | Since the moles of O is still not a whole<br>number, both moles can be multiplied by<br>2, while rounding to a whole number.                         |
| e. Write the empirical formula                                                                                        | The empirical of the compound is $Fe_2O_3$                                                                                                           |

